Pre-Calculus CP 1 – Section 8.2 Notes Matrix Multiplication

Name:

In order to MULTIPLY two matrices, the number of COLUMNS in the **first** matrix must match the number of ROWS in the **second** matrix.

For example: If A is an $\underline{m} \times \underline{n}$ matrix and B is an $\underline{n} \times \underline{p}$ matrix, then you **can** multiply because the "n"s are equal, and the product is a m x p matrix

Matrix Multiplication

A x B = AB

 $m \times n \times n \times p = n \times p$

Ex. 1) State whether the product is defined (can you multiply?) If so, give the dimensions of AB

- a) A: 2 x 3
- B: 3 x 4
- AB: _____

- b) A: 3 x 2
- B: 3 x 4
- AB: _____

- c) A: 5 x 4
- B: 5 x 4
- AB: _____

- d) A: 4 x 4
- B: 4 x 5
- AB: _____

Ex. 2) Find the product of the matrices $\left(\frac{1}{2} \right)$

B:
$$\begin{bmatrix} 6 & 1 \\ 3 & -2 \\ -4 & 7 \end{bmatrix}$$

Pre-Calculus CP 1 - Section 8.2 Notes

Ex. 3) Find each product

A:
$$\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$$
 B:
$$\begin{bmatrix} 1 & -4 \\ 2 & 1 \end{bmatrix}$$

B:
$$\begin{bmatrix} 1 & -4 \\ 2 & 1 \end{bmatrix}$$

AB:

BA:

Does AB = BA? _____
Is matrix multiplication commutative? (is order unimportant?) _____

Ex. 4) Find the product of the matrices

A:
$$\begin{bmatrix} -2 & 3 \\ 1 & -4 \\ 6 & 0 \end{bmatrix}$$
 B:
$$\begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$$

$$B: \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$$

Properties of Matrix Operations: A, B, and C are matrices, and k is a scalar

Associative Property of Addition: A + (B + C) = _____

Commutative Property of Addition: A + B = _____

Does the commutative property work for subtraction too?

Does the commutative property work for multiplication?

Distributive Property of Addition (with a scalar): k(A + B) = _____

AND Subtraction: k(A - B) =

Associative Property of Multiplication: A(BC) = _____

Distributive Property of Multiplication: A(B + C) = _____

Or(A + B)C =

Associative Property of scalar multiplication: k(AB) = _____

Ex. 5) Using matrix operations, find and simplify the following:

A:
$$\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$
 B:
$$\begin{bmatrix} -2 & 0 \\ 4 & 2 \end{bmatrix}$$
 C:
$$\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$$

$$B: \begin{bmatrix} -2 & 0 \\ 4 & 2 \end{bmatrix}$$

$$C: \left[\begin{array}{cc} 1 & 1 \\ 3 & 2 \end{array} \right]$$

a)
$$A(B + C)$$

Word Problem!! Two softball teams submit equipment lists for the season are shown below.

Women's Team	Men's Team
12 bats	15 bats
45 balls	38 balls
15 uniforms	17 uniforms

Each bat costs \$21, each ball costs \$4, and each uniform costs \$30.

Write two matrices, one to represent the equipment requested and one to represent cost. LABEL your rows and columns- this is very important!

Find the total cost of equipment for each team: